Article ID Journal Published Year Pages File Type
5076494 Insurance: Mathematics and Economics 2015 8 Pages PDF
Abstract
We evaluate the par spread for a single-name credit default swap with a random recovery rate. It is carried out under the framework of a structural default model in which the asset-value process is of infinite activity but finite variation. The recovery rate is assumed to depend on the undershoot of the asset value below the default threshold when default occurs. The key part is to evaluate a generalized expected discounted penalty function, which is a special case of the so-called Gerber-Shiu function in actuarial ruin theory. We first obtain its double Laplace transform in time and in spatial variable, and then implement a numerical Fourier inversion integration. Numerical experiments show that our algorithm gives accurate results within reasonable time and different shapes of spread curve can be obtained.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,