Article ID Journal Published Year Pages File Type
5077016 Insurance: Mathematics and Economics 2009 12 Pages PDF
Abstract
We generalize an integral representation for the ruin probability in a Crámer-Lundberg risk model with shifted (or also called US-)Pareto claim sizes, obtained by Ramsay (2003), to classical Pareto(a) claim size distributions with arbitrary real values a>1 and derive its asymptotic expansion. Furthermore an integral representation for the tail of compound sums of Pareto-distributed claims is obtained and numerical illustrations of its performance in comparison to other aggregate claim approximations are provided.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,