Article ID Journal Published Year Pages File Type
5077025 Insurance: Mathematics and Economics 2009 7 Pages PDF
Abstract
This paper proposes some new classes of risk measures, which are not only comonotonic subadditive or convex, but also respect the (first) stochastic dominance or stop-loss order. We give their representations in terms of Choquet integrals w.r.t. distorted probabilities, and show that if the physical probability is atomless then a comonotonic subadditive (resp. convex) risk measure respecting stop-loss order is in fact a law-invariant coherent (resp. convex) risk measure.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,