Article ID Journal Published Year Pages File Type
5077112 Insurance: Mathematics and Economics 2009 6 Pages PDF
Abstract
We consider a problem of optimal reinsurance and investment with multiple risky assets for an insurance company whose surplus is governed by a linear diffusion. The insurance company's risk can be reduced through reinsurance, while in addition the company invests its surplus in a financial market with one risk-free asset and n risky assets. In this paper, we consider the transaction costs when investing in the risky assets. Also, we use Conditional Value-at-Risk (CVaR) to control the whole risk. We consider the optimization problem of maximizing the expected exponential utility of terminal wealth and solve it by using the corresponding Hamilton-Jacobi-Bellman (HJB) equation. Explicit expression for the optimal value function and the corresponding optimal strategies are obtained.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,