Article ID Journal Published Year Pages File Type
5077241 Insurance: Mathematics and Economics 2010 7 Pages PDF
Abstract

In this article, we characterize comonotonicity and related dependence structures among several random variables by the distribution of their sum. First we prove that if the sum has the same distribution as the corresponding comonotonic sum, then the underlying random variables must be comonotonic as long as each of them is integrable. In the literature, this result is only known to be true if either each random variable is square integrable or possesses a continuous distribution function. We then study the situation when the distribution of the sum only coincides with the corresponding comonotonic sum in the tail. This leads to the dependence structure known as tail comonotonicity. Finally, by establishing some new results concerning convex order, we show that comonotonicity can also be characterized by expected utility and distortion risk measures.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
,