Article ID Journal Published Year Pages File Type
5077347 Insurance: Mathematics and Economics 2008 17 Pages PDF
Abstract

We study indifference pricing of mortality contingent claims in a fully stochastic model. We assume both stochastic interest rates and stochastic hazard rates governing the population mortality. In this setting we compute the indifference price charged by an insurer that uses exponential utility and sells k contingent claims to k independent but homogeneous individuals. Throughout we focus on the examples of pure endowments and temporary life annuities. We begin with a continuous-time model where we derive the linear pdes satisfied by the indifference prices and carry out extensive comparative statics. In particular, we show that the price-per-risk grows as more contracts are sold. We then also provide a more flexible discrete-time analog that permits general hazard rate dynamics. In the latter case we construct a simulation-based algorithm for pricing general mortality-contingent claims and illustrate with a numerical example.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,