Article ID Journal Published Year Pages File Type
5077558 Insurance: Mathematics and Economics 2007 8 Pages PDF
Abstract
Tail dependence copulas provide a natural perspective from which one can study the dependence in the tail of a multivariate distribution. For Archimedean copulas with continuously differentiable generators, regular variation of the generator near the origin is known to be closely connected to convergence of the lower tail dependence copulas to the Clayton copula. In this paper, these characterizations are refined and extended to the case of generators which are not necessarily continuously differentiable. Moreover, a counterexample is constructed showing that even if the generator of a strict Archimedean copula is continuously differentiable and slowly varying at the origin, then the lower tail dependence copulas still do not need to converge to the independent copula.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,