Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5084970 | International Review of Financial Analysis | 2013 | 26 Pages |
Abstract
Using a sample of 23,218Â company-year observations of listed companies during the period 1980-2011, the paper investigates empirically the utility of combining accounting, market-based and macro-economic data to explain corporate credit risk. The paper develops risk models for listed companies that predict financial distress and bankruptcy. The estimated models use a combination of accounting data, stock market information and proxies for changes in the macro-economic environment. The purpose is to produce models with predictive accuracy, practical value and macro dependent dynamics that have relevance for stress testing. The results show the utility of combining accounting, market and macro-economic data in financial distress prediction models for listed companies. The performance of the estimated models is benchmarked against models built using a neural network (MLP) and against Altman's (1968) original Z-score specification.
Related Topics
Social Sciences and Humanities
Economics, Econometrics and Finance
Economics and Econometrics
Authors
Mario Hernandez Tinoco, Nick Wilson,