Article ID Journal Published Year Pages File Type
5096157 Journal of Econometrics 2014 46 Pages PDF
Abstract
In the presence of heteroscedasticity and autocorrelation of unknown forms, the covariance matrix of the parameter estimator is often estimated using a nonparametric kernel method that involves a lag truncation parameter. Depending on whether this lag truncation parameter is specified to grow at a slower rate than or the same rate as the sample size, we obtain two types of asymptotic approximations: the small-b asymptotics and the fixed-b asymptotics. Using techniques for probability distribution approximation and high order expansions, this paper shows that the fixed-b asymptotic approximation provides a higher order refinement to the first order small-b asymptotics. This result provides a theoretical justification on the use of the fixed-b asymptotics in empirical applications. On the basis of the fixed-b asymptotics and higher order small-b asymptotics, the paper introduces a new and easy-to-use asymptotic F test that employs a finite sample corrected Wald statistic and uses an F-distribution as the reference distribution. Finally, the paper develops a bandwidth selection rule that is testing-optimal in that the bandwidth minimizes the type II error of the asymptotic F test while controlling for its type I error. Monte Carlo simulations show that the asymptotic F test with the testing-optimal bandwidth works very well in finite samples.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
,