Article ID Journal Published Year Pages File Type
5096250 Journal of Econometrics 2013 24 Pages PDF
Abstract
This paper studies robust inference for linear panel models with fixed effects in the presence of heteroskedasticity and spatiotemporal dependence of unknown forms. We propose a bivariate kernel covariance estimator that nests existing estimators as special cases. Our estimator improves upon existing estimators in terms of robustness, efficiency, and adaptiveness. For distributional approximations, we considered two types of asymptotics: the increasing-smoothing asymptotics and the fixed-smoothing asymptotics. Under the former asymptotics, the Wald statistic based on our covariance estimator converges to a chi-square distribution. Under the latter asymptotics, the Wald statistic is asymptotically equivalent to a distribution that can be well approximated by an F distribution. Simulation results show that our proposed testing procedure works well in finite samples.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,