Article ID Journal Published Year Pages File Type
5096355 Journal of Econometrics 2013 16 Pages PDF
Abstract
In this paper we provide a method for estimating multivariate distributions defined through hierarchical Archimedean copulas. In general, the true structure of the hierarchy is unknown, but we develop a computationally efficient technique to determine it from the data. For this purpose we introduce a hierarchical estimation procedure for the parameters and provide an asymptotic analysis. We consider both parametric and nonparametric estimation of the marginal distributions. A simulation study and an empirical application show the effectiveness of the grouping procedure in the sense of structure selection.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,