Article ID Journal Published Year Pages File Type
5096507 Journal of Econometrics 2012 15 Pages PDF
Abstract

In this paper, we explore partial identification and inference for the quantile of treatment effects for randomized experiments. First, we propose nonparametric estimators of sharp bounds on the quantile of treatment effects and establish their asymptotic properties under general conditions. Second, we construct confidence intervals for the bounds and the true quantile by using the approach in Chernozhukov et al. (2009). Third, under additional conditions, we develop a new approach to construct confidence intervals for the bounds and the true quantile and refer to it as the order statistic approach. A simulation study is conducted to investigate the finite sample performance of both approaches.

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,