Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5097051 | Journal of Econometrics | 2008 | 17 Pages |
Abstract
Traditional estimators for nonparametric frontier models (DEA, FDH) are very sensitive to extreme values/outliers. Recently, Aragon et al. [2005. Nonparametric frontier estimation: a conditional quantile-based approach. Econometric Theory 21, 358-389] proposed a nonparametric α-frontier model and estimator based on a suitably defined conditional quantile which is more robust to extreme values/outliers. Their estimator is based on a nonsmooth empirical conditional distribution. In this paper, we propose a new smooth nonparametric conditional quantile estimator for the α-frontier model. Our estimator is a kernel based conditional quantile estimator that builds on early work of Azzalini [1981. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68, 326-328]. It is computationally simple, resistant to outliers and extreme values, and smooth. In addition, the estimator is shown to be consistent and n asymptotically normal under mild regularity conditions. We also show that our estimator's variance is smaller than that of the estimator proposed by Aragon et al. A simulation study confirms the asymptotic theory predictions and contrasts our estimator with that of Aragon et al.
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Carlos Martins-Filho, Feng Yao,