Article ID Journal Published Year Pages File Type
5097387 Journal of Econometrics 2007 34 Pages PDF
Abstract
In this paper we consider a panel data model with error components that are both spatially and time-wise correlated. The model blends specifications typically considered in the spatial literature with those considered in the error components literature. We introduce generalizations of the generalized moments estimators suggested in Kelejian and Prucha (1999. A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review 40, 509-533) for estimating the spatial autoregressive parameter and the variance components of the disturbance process. We then use those estimators to define a feasible generalized least squares procedure for the regression parameters. We give formal large sample results for the proposed estimators. We emphasize that our estimators remain computationally feasible even in large samples.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,