Article ID Journal Published Year Pages File Type
5097421 Journal of Econometrics 2007 18 Pages PDF
Abstract
We investigate the finite sample properties of the maximum likelihood estimator for the spatial autoregressive model. A stochastic expansion of the score function is used to develop the second-order bias and mean squared error of the maximum likelihood estimator. We show that the results can be expressed in terms of the expectations of cross products of quadratic forms, or ratios of quadratic forms in a normal vector which can be evaluated using the top order invariant polynomial. Our numerical calculations demonstrate that the second-order behaviors of the maximum likelihood estimator depend on the degree of sparseness of the weights matrix.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, ,