Article ID Journal Published Year Pages File Type
5102674 Physica A: Statistical Mechanics and its Applications 2017 22 Pages PDF
Abstract
The time-convolutionless mode-coupling theory (TMCT) recently proposed is reformulated under the condition that one of two approximations, which have been used to formulate the original TMCT in addition to the MCT approximations done on a derivation of nonlinear memory function in terms of the intermediate-scattering function, is not employed because it causes unphysical results for intermediate times. The improved TMCT equation is then derived consistently under another approximation. It is first checked that the ergodic to non-ergodic transition obtained by a new equation is exactly the same as that obtained by an old one because the long-time dynamics of both equations coincides with each other. However, it is emphasized that a difference between them appears in the intermediate-time dynamics of physical quantities. Such a difference is explored numerically in the dynamics of a non-Gaussian parameter by employing the Percus-Yevick static structure factor to calculate the nonlinear memory function.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,