Article ID Journal Published Year Pages File Type
5103283 Physica A: Statistical Mechanics and its Applications 2017 12 Pages PDF
Abstract
Ion-acoustic rogue waves are investigated in a two-component magnetized solar wind plasma, composed of positively charged fluid ions, as well as nonextensive electrons. Typical solar wind plasmas parameters are used. It is shown that the wave number domain for the onset of ion-acoustic modulational instability enlarges as the electrons evolve towards their thermal equilibrium. Interestingly, we show that as the solar wind plasma expands far out from the sun, the wave amplitude increases and the IA rogue wave concentrates therefore a significant amount of energy. Our investigation may be of wide relevance to astronomers and space scientists working on the solar wind and interstellar plasmas.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,