Article ID Journal Published Year Pages File Type
5116788 Journal of Environmental Management 2017 10 Pages PDF
Abstract

•Mechanism of how temperature variation affects sulfide/ferrous oxidation was study.•S/Fe oxidation associated bacteria were remarkably restructured by temperature.•Variation of S/Fe oxidation could attributed to shift of dominant bacteria.•Higher odor control efficiency would be achieved in summer than other seasons.

Nitrate-driven sulfide oxidation has been proved a cost-effective way to control sediments odor which has long been a universal problem for urban rivers in south China areas. In this work, sediments treatment experiments under a dynamic variation of temperature from 5 °C to 35 °C with 3% of calcium nitrate added were conducted to reveal the influence of temperature variation on this process. The results showed that microbial community was remarkably restructured by temperature variation. Pseudomonas (15.56–29.31%), Sulfurimonas (26.81%) and Thiobacillus (37.99%) were dominant genus at temperature of ≤15 °C, 25 °C and 35 °C, respectively. It seemed that species enrichment occurring at different temperature gradient resulted in the distinct variation of microbial community structure and diversity. Moreover, nitrate-driven sulfide and ferrous oxidation were proportionally promoted only when temperature increased above 15 °C. The dominant bacteria at high temperature stage were those genus that closely related to autotrophic nitrate-driven sulfide and ferrous oxidizing bacteria (e.g.Thiobacillus, Sulfurimonas and Thermomonas), revealing that promotion of sulfide/ferrous oxidation could be attributed to the change of dominant bacteria determined by temperature variation. Thus, a higher treatment efficiency by calcium nitrate addition for odor control would be achieved in summer than any other seasons in south China areas.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment