Article ID Journal Published Year Pages File Type
5117058 Journal of Environmental Management 2017 8 Pages PDF
Abstract
Rainwater harvesting might help to achieve self-sufficiency, but it must comply with health standards. We studied the runoff quantity and quality harvested from seven urban surfaces in a university campus in Barcelona according to their use (pedestrian or motorized mobility) and materials (concrete, asphalt and slabs). An experimental rainwater harvesting system was used to collect the runoff resulting from a set of rainfall events. We estimated the runoff coefficient and initial abstraction of each surface and analyzed the physicochemical and microbiological properties, and hydrocarbon and metal content of the samples. Rainfall intensity, surface material and state of conservation were essential parameters. Because of low rainfall intensity and surface degradation, the runoff coefficient was variable, with a minimum of 0.41. Concrete had the best quality, whereas weathering and particulate matter deposition led to worse quality in asphalt areas. Physicochemical runoff quality was outstanding when compared to superficial and underground water. Microorganisms were identified in the samples (>1 CFU/100 mL) and treatment is required to meet human consumption standards. Motorized traffic mostly affects the presence of metals such as zinc (31.7 μg/L). In the future, sustainable mobility patterns might result in improved rainwater quality standards.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , ,