Article ID Journal Published Year Pages File Type
5117295 Journal of Environmental Management 2016 5 Pages PDF
Abstract

•Al foil waste was recycled into nanocrystalline Al2O3 with different morphologies.•High pure nanocrystalline alumina was obtained using a low cost-effective technique.•Near-fully dense alumina object with attractive properties was produced.•The waste management trend used might be a perfect for users and manufacturers.

In this work, nanoscale single crystalline γ- and α-alumina powders have been successfully prepared from aluminum foil waste precursor via co-precipitation method using NH4OH as a precipitant. The obtained gel after co-precipitation treatment, was calcined at different temperatures (500,700, 900, 1050, 1100, 1300 and 1500 °C) and the products were characterized by XRD, FTIR and HRTEM. The results revealed that nano-γ-Al2O3 was fully transformed to nanometer-sized α-Al2O3 (36-200 nm) after annealing at temperatures as low as 1100 °C.The thermally preheated powder at 500 °C was further pressed under 95 MPa by the uniaxial press and the obtained bodies were found to have98.82% of the theoretical density, 1.18% porosity and 708 MPa compressive strength, when sintered at temperatures as low as 1600 °C without using any sintering aid. These excellent results proved that this work will contribute to finding a commercial source for preparing sub 100 nm α-alumina through the secondary resources management and even more so to synthesizing strong α-Al2O3 bodies which are promising in terms of their structure and compression. The α-Al2O3 bodies synthesized by the present work could be used as a feedstock for fabrication of various kinds of functional and structural materials that are extensively used in high tech.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,