Article ID Journal Published Year Pages File Type
5119047 Spatial Statistics 2016 19 Pages PDF
Abstract

The optimization of spatial sampling by simulated annealing has been demonstrated and applied for a range of objective functions. In practice more than one objective function may be important for sampling, and there may be complex trade-offs between them. In this paper it is shown how a multi-objective optimization algorithm can be applied to a spatial sampling problem. This generates a set of solutions which is non-dominated (no one solution does better than any other on all objective functions). These solutions represent different feasible trade-offs between the objective functions, and a subset might be practically acceptable. The algorithm is applied to a hypothetical example of sampling for a regional mean with the variance of the mean and the total distance travelled between sample points as the two objective functions. The solutions represent a transition of sample arrays from a loose grid to a tight loop. The potential to develop this approach and apply it to other spatial sampling problems is discussed.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
,