Article ID Journal Published Year Pages File Type
5129113 Procedia Manufacturing 2016 8 Pages PDF
Abstract

Milling processes for the manufacturing of parts for aerospace applications can be influenced by various effects. When machining structural parts with high material removal rates, the stiffness of the machine tool can be a limiting factor because chatter vibrations. Additionally, vibrations of thin-walled structures, e. g., the blades of impellers or turbines, can lead to chatter vibrations and surface location errors. Thermo-mechanical deformations are another cause for violations of given shape tolerances. Geometric physically-based process simulations can be used to analyze milling processes with regard to these effects in order to optimize the process parameters. In this paper, an overview of several applications of a geometric physically-based simulation system for analyzing different effects during milling processes is presented. Depending on the relevant effects, process forces, the dynamic behaviour of the tool-spindle-machine system, vibrations of workpieces and fixture systems, as well as thermo-mechanical deformations are calculated.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,