Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5129631 | Statistics & Probability Letters | 2018 | 7 Pages |
Jittered Sampling is a refinement of the classical Monte Carlo sampling method. Instead of picking n points randomly from [0,1]2, one partitions the unit square into n regions of equal measure and then chooses a point randomly from each partition. Currently, no good rules for how to partition the space are available. In this paper, we present a solution for the special case of subdividing the unit square by a decreasing function into two regions so as to minimize the expected squared L2-discrepancy. The optimal partitions are given by a highly nonlinear integral equation for which we determine an approximate solution. In particular, there is a break of symmetry and the optimal partition is not into two sets of equal measure. We hope this stimulates further interest in the construction of good partitions.