Article ID Journal Published Year Pages File Type
5129872 Statistics & Probability Letters 2017 9 Pages PDF
Abstract
We consider a bias correction method for kernel density estimators based on a generalized jack-knifing with different bandwidths. We compare it with a standard kernel density estimation method with fourth order kernels, since both methods have the same rate of convergence. The bias corrected method has a tuning parameter. We investigate how to optimize the constant in the asymptotical mean integrated squared error of the bias corrected estimator with respect to the tuning parameter. We also explore whether an optimal kernel exists. This paper answers on the questions posed in section 3.2 of Jones and Foster (1993) where only numerical investigation was given.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
,