Article ID Journal Published Year Pages File Type
5131765 Analytical Biochemistry 2016 6 Pages PDF
Abstract

A disintegrin and metalloproteinase 15 (ADAM15), also known as metargidin, plays important roles in regulating inflammation, wound healing, neovascularization, and is an attractive drug target. Fluorescence resonance energy transfer (FRET)-based peptide substrates were tested to identify candidate reagents for high throughput screening and detection of ADAM15 in biological samples. ADAM15 exhibits a unique and diverse activity profile compared to other metalloproteinases. Two FRET substrates, Dabcyl-Gly-Pro-Leu-Gly-Met-Arg-Gly-Lys(FAM)-NH2 (PEPDAB011) and Dabcyl-Ala-Pro-Arg-Trp-Ile-Gln-Asp-Lys(FAM)-NH2 (PEPDAB017), which also detect activities of several matrix metalloproteinases (MMPs −2, -9, and −13), were efficiently cleaved by ADAM15 with specificity constants of 5800 M−1 s−1 and 4300 M−1 s−1, respectively. Additionally, ADAM15 efficiently processed Dabcyl-Leu-Arg-Glu-Gln-Gln-Arg-Leu-Lys-Ser-Lys(FAM)-NH2 (PEPDAB022), which is based on a physiological CD23 cleavage site, with a specificity constant (kcat/Km) of 5200 M−1 s−1. PEPDAB022 was used to screen the ability of known metalloproteinase inhibitors including TAPI-2, marimastat, GI-254023, and the Tissue Inhibitor of Metalloproteinases(TIMPs) 1 and 3 to block ADAM15 activity. Even though ADAM15 exhibits similar substrate preferences to other metalloproteinases, many broad spectrum inhibitors failed to block ADAM15 activity at concentrations as high as 50 μM. Thus, a clear need exists to develop potent and selective ADAM15 inhibitors, and the FRET substrates described herein should aid future research efforts towards this aim.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,