Article ID Journal Published Year Pages File Type
5133982 Food Chemistry 2017 10 Pages PDF
Abstract

•Lipid analysis revealed a higher cholesterol/sphingomyelin ratio in bovine milk compared to goat and sheep milks.•The microstructure of the membrane surrounding milk fat was investigated by confocal microscopy.•The structural characteristics of the sphingomyelin-rich domains result from their nucleation and growth upon cooling.•Extended storage at low temperature favors the formation of circular lipid domains.•Diffusion, coalescence and melting were observed upon heating.

The microstructure of the milk fat globule membrane (MFGM) is still poorly understood. The aim of this study was to investigate the dynamics of the MFGM at the surface of milk fat globules in relation to temperature and time, and in relation to the respective lipid compositions of the MFGM from bovine, goat and sheep milks. In-situ structural investigations were performed using confocal microscopy. Lipid domains were observed over a wide range of temperatures (4-60 °C). We demonstrated that rapid cooling of milk enhances the mechanisms of nucleation and that extended storage induces lipid reorganization within the MFGM with growth, leading to circular lipid domains. Diffusion of the lipid domains, coalescence and reduction in domain size were observed upon heating. Different MFGM features could be related to the respective cholesterol/sphingomyelin molar ratio in the three milk species. These structural changes may affect the interfacial properties of the MFGM, with consequences for the functional properties of fat globules and the mechanisms of their digestion.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,