Article ID Journal Published Year Pages File Type
5134357 International Journal of Mass Spectrometry 2016 9 Pages PDF
Abstract

•Surfactant AOT supramolecular clusters are studied by ion mobility mass spectrometry.•Stability and fragmentation are investigated by energy resolved mass spectrometry.•The fragmentation pathway proceeds through charge separation and neutral loss.•The unexpected neural loss mechanism is more deeply analysed

Stability and fragmentation patterns of multicharged aggregates of sodium bis(2-ethylhexyl)-sulfosuccinate (NaAOT) in gas phase have been investigated by ion mobility mass spectrometry (IM-MS) and tandem mass spectrometry (MS-MS). Positively doubly charged NaAOT aggregates show at low collision energy a preference for the loss of NaAOT molecules, whereas fragmentation through charge separation process is favored at higher collision energy. By increasing the charge state of the aggregates, the fragmentation through charge separation tends to predominate especially at low aggregation number and only charge separation fragmentation is observed for positively quadruply charged species. On the other hand, the fragmentation of negatively doubly charged NaAOT aggregates is always characterized by a structural collapse of the entire ensemble leading to the formation of small-size singly charged fragments.The analysis of the collision energy required to fragment the 50% (CE50%) of positively and negatively charged NaAOT aggregates allows to emphasize the role of electrostatic repulsion, degree of freedom and statistical effects as determining factors of the aggregation number and charge state dependence of CE50% values.Overall, the observed behavior of positively and negatively multicharged NaAOT aggregates in gas phase has been rationalized in terms of the electrostatic interactions between sodium counterions and negatively charged surfactant heads mainly responsible of the reverse-micelle like structural arrangement of these non-covalent aggregates and of their stability.

Graphical abstractDownload high-res image (173KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , ,