Article ID Journal Published Year Pages File Type
5134398 International Journal of Mass Spectrometry 2017 7 Pages PDF
Abstract

We have quantum chemically investigated the archetypal nucleophilic substitution reactions at carbon (SN2@C) and at silicon (SN2@Si) in the model reaction systems Cl− + A(CH3)2(CH2X)Cl (A = C, Si; X = H, F, Cl, Br, I) using relativistic density functional theory (DFT) at ZORA-OLYP/TZ2P. Our purpose is twofold. We wish to understand: (i) how the α-substituent X affects SN2 reactivity; and (ii) how methyl substituents at the central electrophilic atom A exactly participate in the transition vector of the Walden inversion. Interestingly, despite the fact that our SN2 model reactions are symmetric, i.e., constitute identity reactions, they proceed via slightly asymmetric transition states. We have also explored competing E2 pathways.

Graphical abstractDownload high-res image (87KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,