Article ID Journal Published Year Pages File Type
5134832 Journal of Chromatography A 2017 10 Pages PDF
Abstract

•Novel pseudopeptide bound silica stationary phases were prepared.•The CSPs exhibited a high enantioselectivity for several kinds of compounds.•Poly(2-oxazoline) shows promise as an ideal scaffold to construct chiral selectors.•The present study provides a new route for the design of chiral separation materials.

Poly(2-oxazoline)s are regarded as bioinspired polymers due to their structural relation to polypeptides. In this work, a new kind of poly(2-oxazoline)s containing dipeptide segments in the side chains was synthesized through a bottom-up protocol, which involves ring-opening copolymerization of 2-(N-Boc-l-2-pyrrolidinyl)-2-oxazoline (PyOXBoc) with 2-(3-butenyl)-2-oxazoline (BuOX) followed by deprotection and amide coupling with N-protected L-proline. The resulting vinyl-functionalized polymers were subsequently immobilized onto mercaptopropylated silica bead matrices by means of thio-click chemistry and their potential as the chiral stationary phase (CSP) for high-performance liquid chromatography was preliminarily evaluated with a series of structurally different racemates. The results showed that this class of pseudopeptide CSPs is particularly adapted to the enantiomeric separation of 1,1′-bi-2-naphthol and acyloin compounds (such as benzoin) under normal-phase conditions. Moreover, an increase in the length of polymer main chains is beneficial to the enhancement of both enantioselectivity and resolution ability. The chiral discrimination of analytes by the polymeric selectors stems primarily from hydrogen bonding and π-π interactions as well as steric hindrance.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,