Article ID Journal Published Year Pages File Type
5135613 Journal of Chromatography A 2016 23 Pages PDF
Abstract

•Compilation of recent studies on chiral recognition mechanisms in separation sciences.•New developments regarding established selectors such as polysaccharide derivatives and cyclodextrins.•First molecular modeling studies on molecular micelles are summarized.•Emerging new chiral selectors such as metal-organic frameworks and chiral cages are discussed.

Stereospecific recognition of chiral molecules is an important issue in various aspects of life sciences and chemistry including analytical separation sciences. The basis of analytical enantioseparations is the formation of transient diastereomeric complexes driven by hydrogen bonds or ionic, ion-dipole, dipole-dipole, van der Waals as well as π-π interactions. Recently, halogen bonding was also described to contribute to selector-selectand complexation. Besides structure-separation relationships, spectroscopic techniques, especially NMR spectroscopy, as well as X-ray crystallography have contributed to the understanding of the structure of the diastereomeric complexes. Molecular modeling has provided the tool for the visualization of the structures. The present review highlights recent contributions to the understanding of the binding mechanism between chiral selectors and selectands in analytical enantioseparations dating between 2012 and early 2016 including polysaccharide derivatives, cyclodextrins, cyclofructans, macrocyclic glycopeptides, proteins, brush-type selectors, ion-exchangers, polymers, crown ethers, ligand-exchangers, molecular micelles, ionic liquids, metal-organic frameworks and nucleotide-derived selectors. A systematic compilation of all published literature on the various chiral selectors has not been attempted.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
,