Article ID Journal Published Year Pages File Type
5136531 Journal of Chromatography B 2017 9 Pages PDF
Abstract

•UPLC-QTOF/MS-based metabonomics approach was applied to study the therapeutic mechanism underlying F-GAL in diabetes.•Fourteen potential biomarkers were identified. Such as urocanic acid, citric acid, hippuric acid, arachidonic acid, and so on.•F-GAL was elucidated to be a potential therapeutic agent for the treatment of diabetes via multiple therapeutic mechanisms.

Fenugreek is a traditional plant for the treatment of diabetes. Galactomannan, an active major component in fenugreek seeds, has shown hypoglycemic activity. The present study was performed to investigate the therapeutic mechanism underlying fenugreek galactomannan (F-GAL) in treating diabetes, using a metabonomics approach based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The F-GAL used for study was highly purified, and its yield, purity, and galactose/mannose ratio were characterized by capillary zone electrophoresis (CZE) and a modified phenol-sulfuric acid method. After treatment of streptozotocin (STZ)-induced diabetic rats with F-GAL for 28 days, urine and serum samples were analyzed by UPLC-QTOF/MS. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA) were applied to distinguish the non-diabetic/untreated, diabetic/untreated, and diabetic/F-GAL-treated groups. Then, potential biomarkers were identified that may help elucidate the underlying therapeutic mechanism of F-GAL in diabetes. The results demonstrated that there was a clear separation among the three groups in the PCA model. Fourteen potential biomarkers were identified by OPLS-DA, and they were determined to be produced in response to the therapeutic effects of F-GAL. These biomarkers were involved in histidine metabolism, tryptophan metabolism, energy metabolism, phenylalanine metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism. In conclusion, our study demonstrates that a metabonomics approach is a powerful, novel tool that can be used to evaluate the underlying therapeutic mechanisms of herb extracts.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , ,