Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5143544 | Journal of Taibah University for Science | 2017 | 6 Pages |
Abstract
Let X be a real or complex Banach space, let L(X) be the algebra of all bounded linear operators of X and let A(X)âL(X) be a standard operator algebra. Suppose there exists a linear mapping T:A(X)âL(X) satisfying the relation T(An) = T(A)Anâ1 â AT(Anâ2)A â Anâ1T(A) for all AâA(X), where n > 2 is some fixed integer. Then T is of the form: (i)T(A) = 0 for all AâF(X) and (ii) T(A) = BA, for all AâA(X) and some BâL(X).
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Nadeem ur Rehman, Tarannum Bano,