Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5144545 | Ultrasonics Sonochemistry | 2017 | 32 Pages |
Abstract
Molybdenum disulfide (MoS2), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Majed Amini, Ahmad Ramazani S.A, Morteza Faghihi, Seyyedfaridoddin Fattahpour,