| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 5144660 | Ultrasonics Sonochemistry | 2017 | 46 Pages |
Abstract
A novel nanocomposite, Au/NiGa2O4-Au-Bi2O3, as an effective sonocatalyst was prepared through hydrothermal process and high-temperature calcination methods, and then characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The sonocatalytic activity of Au/NiGa2O4-Au-Bi2O3 nanocomposite was detected through the degradation of some organic pollutants under ultrasonic irradiation. Furthermore, the influences of mass ratio of NiGa2O4 and Bi2O3, ultrasonic irradiation time and used times on the sonocatalytic degradation efficiency were investigated by using Total Organic Carbon (TOC) and UV-vis spectroscopy. The experimental results showed that, because of the existence of Au nanoparticles (AuNPs) served as both conductive passageway and co-catalyst, the nanocomposite sonocatalyst (Au/NiGa2O4-Au-Bi2O3) displayed an excellent sonocatalytic activity in degradation of some organic pollutants under ultrasonic irradiation.
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Guowei Wang, Yingying Huang, Guanshu Li, Hongbo Zhang, Yidi Wang, Bowen Li, Jun Wang, Youtao Song,
