Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5150532 | Solid State Ionics | 2017 | 7 Pages |
Abstract
Caesium hydrogen sulfate (CsHSO4) and caesium dihydrogen phosphate (CsH2PO4) are solid acids that undergo superprotonic phase-transitions at about 140 and 230 °C, respectively. As a result, the proton conductivity is increased by several orders of magnitude. However, the practical operational temperature range is narrow due to decomposition of the high-conductivity phases. For CsHSO4, it is known that this window can be extended to lower temperatures by addition of carefully selected N-heterocycles. The present work investigates if the same approach can be used to extend the practical operating temperature range of CsH2PO4 as well. Binary mixtures of CsH2PO4 with 1,2,4-triazole, benzimidazole or imidazole were prepared by means of mechanochemical synthesis. Mixtures based on CsHSO4 were prepared as a basis for a comparative discussion. It was found that CsHSO4 formed organic-inorganic salts, while CsH2PO4 formed heterogeneous mixtures with the N-heterocycles due to its weaker acidity. At a N-heterocycle content of 30 mol%, enhanced proton conductivity was observed for both solid acids at temperatures below their superprotonic phase transitions.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
David Aili, Ying Gao, Junyoung Han, Qingfeng Li,