Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5154952 | Biochemical Systematics and Ecology | 2017 | 6 Pages |
Abstract
Phylogenetic relationship within Neuroptera is controversial, particularly for the various hypotheses based on both morphological and molecular evidence. In the present study, we determined the complete mitochondrial genome (mitogenome) of Gatzara jezoensis, which is the second representative of the tribe Dendroleontini. The G. jezoensis mitogenome contained the conserved set of 37 mitochondrial genes and a putative control region, with a conserved gene arrangement which was similar to that of most sequenced neuropteran mitogenomes. All transfer RNAs exhibited the canonical cloverleaf secondary structure, except for trnS(AGN). The control region contained two conserved elements (ploy-T stretch and ATGGTTCAAYAAAATAAYYCYCTC motif) and abundant microsatellite-like elements. The phylogenetic analysis of sequenced neuropteran mitogenomes using the concatenated protein-coding genes (PCGs) and ribosomal genes recovered the monophyly of Myrmeleontidae, which revealed this dataset could generate the more robust phylogeny of Neuroptera than that of 13 PCGs dataset.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Lulu Zhang, Jing Yang,