Article ID Journal Published Year Pages File Type
5156426 Carbohydrate Polymers 2018 21 Pages PDF
Abstract
Varying levels of high pressure homogenization (HPH) were applied to disintegrate bacterial nanofibrillated cellulose (BNFC) from bacterial cellulose (BC). HPH was considered as a simple, non-toxic and highly efficient physical method for nanofibrillated cellulose extraction. The blended BC passed through chambers at high pressures of 68, 138 and 207 MPa for 30 cycles. The particle size confirmed disintegration of the BC network fibers to bundles of BNFC and the atomic force microscopy images showed the decreased diameter of individual BNFC in the range 36-67 nm. Fourier transform infrared spectroscopy measurement indicated there were no change in the chemical functional groups of the BNFC compared with BC. The decreased crystallinity index and crystallite size of BNFC with increased pressure confirmed the effect of HPH on the BNFC. Nevertheless, BNFC at 207 MPa had the lowest thermal stability due to having the highest surface area, which resulted in the minimum nanofiber diameter.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,