Article ID Journal Published Year Pages File Type
5156526 Carbohydrate Polymers 2017 32 Pages PDF
Abstract
This work studied the adsorption at dodecane/water interface of amphiphilic polysaccharides derived from dextran (a nonionic bacterial polysaccharide) by random attachment of phenoxy groups along the chains (between 10 and 20 attached phenoxy groups per 100 glucose repeat units). The long-time kinetics of interfacial tension decrease was satisfactorily described assuming diffusion-limited adsorption of hydrophobic units (over 4 h). Dilational rheology of dodecane/water interface was studied for the first time with that kind of amphiphilic polysaccharides and evidenced a significant elastic component. For all dextran derivatives, experimental results were conveniently described using Lucassen-van den Tempel model which assumed diffusion-limited of surface active species. The characteristic frequency increased with the number of attached phenoxy groups and its order of magnitude (10−3-10−2 rad.s−1) was consistent with estimations based on the previous model. Experimental results were compared to those obtained with commercial stabilizers like Pluronics (L64, P105, F68 and F127) and Tween 80.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , ,