Article ID Journal Published Year Pages File Type
5156746 Carbohydrate Polymers 2017 19 Pages PDF
Abstract
Hyaluronan (HA) is a linear polysaccharide composed of repeating disaccharide units. It has been well documented to play an array of biological functions in cancer events. Here, we reported a sequential one-pot multienzyme (OPME) strategy for in vitro synthesis of HA and its derivatives. The strategy, which combined in situ sugar nucleotides generation with HA chain polymerization, could convert cheap monosaccharides into HA polymers without consuming exogenous sugar nucleotide donors. HA polymers (number-average molecular weight ranged from 1.5 × 104 to 5.5 × 105 Da) with over 70% yields were efficiently synthesized and purified from this one-pot system. More importantly, partial labeled HA derivative was further synthesized by metabolic incorporation of unnatural monosaccharide analogues into the sequential OPME system. Cross-linked HA hydrogel was achieved via copper (I)-catalyzed azide-alkyne cycloaddition and exhibited novel networks consisting of both inter- and intra-connected HA chains, which could facilitate the potential applications of this unique polysaccharide.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,