Article ID Journal Published Year Pages File Type
5156868 Carbohydrate Polymers 2017 25 Pages PDF
Abstract
Dual crosslinked system has been proved to be an efficient method to obtain tough and high strength hydrogels. Herein, we synthesized a novel graphene oxide/p(acrylamide-co-poly(ethylene glycol) methyl ether methacrylate)/α-cyclodextrin (GO/P(AM-co-PEGMA)/CD) physical dual crosslinked hydrogel via copolymerization of AM and PEGMA in the α-CD/GO solution. The polymer main chains adsorb onto the GO surface resulting in the first crosslinked system and multiple hydrogen bonds between α-CDs that thread on the PEGMA side chains establish the second crosslinked system. The GO/P(AM-co-PEGMA)/CD hydrogel exhibits favorable tensile properties with fracture strain of 1800% and high fracture stress of 660 kPa; in addition, the hydrogel can bear large compressive stress (2.7 MPa) at strain of 85% without rupture. Furthermore, physical dual crosslinked system endows the GO/P(AM-co-PEGMA)/CD hydrogel with thermoplastic ability and thermo-responsive shape memory behavior. This facial one-pot method will contribute to design and application of high performance hydrogel.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,