Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5156959 | Carbohydrate Polymers | 2017 | 34 Pages |
Abstract
This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Yang Liu, Haitao Huang, Pengfei Huo, Jiyou Gu,