Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5157112 | Carbohydrate Polymers | 2017 | 33 Pages |
Abstract
This article highlights the development of biodegradable flame-retardant composites using a compression technique on low-cost starch, flax fabric (FF) and ammonium polyphosphate (APP) raw materials. The starch was plasticized into thermoplastic starch through a mechano-ball milling process and composites were developed by reinforcing the FF and incorporating varying amounts of APP. The effects of APP on the flammability and thermal properties of the composites were studied. Limited oxygen index and horizontal-burning tests exhibited significant sustainability of the composites toward flame and direct flame self-extinguishment. It was observed that at higher temperatures, APP leads to formation of thermally stable char. The flame retardant properties of the composites were speculated to be due to the protective compact crosslinked network (POP and POC) of the char. The reported effects of APP include improvement in mechanical and biodegradation properties. This investigation provides the design of novel flame-retardant green composites with excellent properties.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
M.N. Prabhakar, Atta ur Rehman Shah, Jung-Il Song,