Article ID Journal Published Year Pages File Type
5157204 Carbohydrate Polymers 2017 8 Pages PDF
Abstract
Microcrystalline cellulose (MCC) was first swollen and then hybridized with nano-ZnO to prepare MCC-ZnO hybrid composites using a microreactor technique. The microstructure of the ZnO particles was controlled and characterized. The results showed that the nano-ZnO particles had a Wurtzite structure and were successfully loaded on the surface of the MCC, and the ZnO morphologies could be shaped as spheres, rods or tubes by controlling the size of microreactor. The hybrid ratio of ZnO was approximately 20%. The MCC-ZnO hybrids were used in SSBR2557A/SiO2 compounds to replace portions of the silica. The results showed that MCC-ZnO compounds had improved processing and mechanical properties compared to the pure MCC sample. The dynamic mechanical analysis (DMA) indicated that MCC-ZnO compounds had higher wet-skid resistance and lower rolling resistance than the control samples. The interfacial bonding between the hybrids and rubber was also improved; the sizes of the hybrid composites decreased in situ during the rubber processing.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,