Article ID Journal Published Year Pages File Type
5157687 Carbohydrate Polymers 2017 16 Pages PDF
Abstract
Conjugatable glycosaminoglycans hold promise for medical applications involving the vectorization of specific molecules. Here, we set out to produce bacterial chondroitin and heparosan from a conjugatable precursor using metabolically engineered Escherichia coli strains. The major barrier to this procedure was the glucuronylation of a lactosyl acceptor required for polymerization. To overcome this barrier, we designed E. coli strains expressing mouse β-1,3-glucuronyl transferase and E. coli K4 chondroitin and K5 heparosan synthases. These engineered strains were cultivated at high density in presence of a lactose-furyl precursor. Enzymatic polymerization occurred on the lactosyl precursor resulting in small chains ranging from 15 to 30 kDa that accumulated in the cytoplasm. Furyl-terminated polysaccharides were produced at a gram-per-liter scale, a yield similar to that reported for conventional strains. Their efficient conjugation using a Diels-Alder cycloaddition reaction in aqueous and catalyst-free conditions was also confirmed using N-methylmaleimide as model dienophile.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,