Article ID Journal Published Year Pages File Type
5157836 Carbohydrate Polymers 2017 9 Pages PDF
Abstract
This study describes the design/physicochemical properties of strontium-containing, mucoadhesive carbohydrate polymeric platforms, designed as treatments for dentine hypersensitivity. Interactive networks were composed of strontium chloride (10% w/w), one of two base polymers (sodium carboxymethylcellulose, NaCMC or hydroxyethylcellulose, HEC), polycarbophil (PC) and, when required, polyvinylpyrrolidone (PVP). The physicochemical properties were characterised using oscillatory and flow rheometry, texture profile analysis, mucoadhesion analysis and, additionally, the strontium release properties were examined. All platforms exhibited pseudoplastic flow. Increasing polymer concentrations increased network viscoelasticity, consistency, hardness, compressibility, gel strength, adhesiveness, mucoadhesion and, retarded strontium release. Principally zero-order strontium release was observed from all platforms. Incorporation of strontium reduced the network elasticity, consistency, hardness, compressibility, gel strength and mucoadhesion; HEC-based platforms being affected to a greater extent than NaCMC platforms. NaCMC-based platforms containing 10% strontium chloride, PVP (3% w/w) and PC (3% w/w) potentially displayed the correct balance of physicochemical properties for the treatment of dentine sensitivity.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,