Article ID Journal Published Year Pages File Type
5163261 Organic Geochemistry 2008 10 Pages PDF
Abstract
A series of Late Devonian to Early Mississippian type II kerogens with vitrinite reflectance values Ro 0.29-2.41% were analyzed using py-GC-MS. In addition, a low maturity kerogen with Ro 0.44% was separated into fractions via density gradient centrifugation, followed by py-GC-MS of the alginite and amorphinite maceral concentrates. Alkylbenzenes and n-alk-1-ene/n-alkane doublets represented the main compound classes identified in all pyrolysates. The pyrolysate from alginite featured 1,2,4-trimethylbenzene and toluene as the two most prominent alkylbenzenes. In contrast, alkylbenzenes in pyrolysates from amorphinite and low maturity bulk kerogens with Ro 0.29-0.63% were dominated by 1,2,3,4-tetramethylbenzene. With increasing thermal maturity, pyrolysates were increasingly dominated by (i) alkylbenzenes with fewer methyl groups, namely by tri- and dimethylbenzenes at medium maturity (Ro 0.69-1.19%), and (ii) by toluene at higher maturity (Ro 1.30-2.41%). With increasing maturity of kerogen type II, the decreasing abundance of highly methyl-substituted alkylbenzenes and the parallel increase in less methyl-substituted alkylbenzenes in flash pyrolysates suggest that demethylation is an important chemical process in the thermal maturation of kerogen type II.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,