Article ID Journal Published Year Pages File Type
5178204 Polymer 2017 9 Pages PDF
Abstract

•Simulation method for estimating yield in polymers on the basis of residual strain data.•Analysis routine, based on hyperbola fits, for extracting yield from simulated data.•Uncertainty quantification techniques to assess confidence in simulated estimates.

In computational materials science, predicting the yield strain of crosslinked polymers remains a challenging task. A common approach is to identify yield as the first critical point of stress-strain curves simulated by molecular dynamics (MD). However, in such cases the underlying data can be excessively noisy, making it difficult to extract meaningful results. In this work, we propose an alternate method for identifying yield on the basis of deformation-recovery simulations. Notably, the corresponding raw data (i.e. residual strains) produce a sharper signal for yield via a transition in their global behavior. We analyze this transition by non-linear regression of computational data to a hyperbolic model. As part of this analysis, we also propose uncertainty quantification techniques for assessing when and to what extent the simulated data is informative of yield. Moreover, we show how the method directly tests for yield via the onset of permanent deformation and discuss recent experimental results, which compare favorably with our predictions.

Graphical abstractDownload high-res image (173KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,