Article ID Journal Published Year Pages File Type
51794 Catalysis Communications 2008 5 Pages PDF
Abstract

Co-reaction of ethene and methanol was carried out over HZSM-5, P-La modified ZSM-5 (PLaHZ) and hydrothermal-treated PLaHZ catalysts. Hydrothermal treatment at high temperature sharply reduced the acidity of the catalyst, on which the direct conversion of ethene or methanol/dimethyl ether was almost completely suppressed. Co-feeding of ethene and methanol over the said catalyst resulted in considerable conversion of both reactants. Meanwhile, high propene selectivity (ca. 80%) was obtained at lower conversions. The methylation of ethene by methanol was responsible for the enhancement of conversions and propene selectivity in the co-reaction system. The further methylation of propene and the cracking of higher olefins were also operative under current reaction conditions.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , , ,