Article ID Journal Published Year Pages File Type
5180112 Polymer 2015 11 Pages PDF
Abstract

•Monotonic shear thinning with exponent −0.57 from 10 s−1 to 1000 s−1.•Negative extrudate swell showing a minimum at a critical shear rate γ˙c.•No full nematic alignment along the flow, even at 1000 s−1.•2 fluids morphology formed under shear in the slit die.•Stress relaxation upon flow cessation coincides with growth of bands widths.

The rheological and structural characteristics of acetoxypropylcellulose (APC) nematic melt are studied at shear rates ranging from 10 s−1 to 1000 s−1 which are relevant to extrusion based processes. APC shows a monotonic shear thinning behavior over the range of shear rates tested. The negative extrudate-swell shows a minimum when a critical shear rate γ˙c is reached. For shear rates smaller than γ˙c, the flow-induced texture consists of two set of bands aligned parallel and normal to the flow direction. At shear rates larger than γ˙c, the flow induced texture is reminiscent of a 2 fluids structure. Close to the shearing walls, domains elongated along the flow direction and stacked along the vorticity are imaged with POM, whereas SALS patterns indicate that the bulk of the sheared APC is made of elliptical domains oriented along the vorticity. No full nematic alignment is achieved at the largest shear rate tested. Below γ˙c, the stress relaxation is described by a stretched exponential. Above γ˙c, the stress relaxation is described by a fast and a slow process. The latter coincides with the growth of normal bands thicknesses, as the APC texture after flow cessation consists of two types of bands with parallel and normal orientations relative to the flow direction. Both bands thicknesses do not depend on the applied shear rate, in contrast to their orientation.

Graphical abstractDownload high-res image (213KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , ,