Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5180797 | Polymer | 2014 | 12 Pages |
A new bead type and diallyl-POSS based polyfluorene (P2) with high symmetrical structure was synthesized via Heck coupling reaction between oligomeric alkynyl fluorene (P1) and diallyl polyhedral oligomeric silsesquioxanes (diallyl-POSS). The molecular weight and the conjugated length of P1 and P2 were well controlled to acquire good solubility and excellent optical property. The bead-type POSS based polymer was characterized by gel permeation chromatography (GPC), FT-IR, 1H NMR and photoluminescence (PL) spectra. High Resolution Transmission Electron Microscopy (HRTEM) micrographs showed that diallyl-POSS were uniformly nano-dispersed in the polymer matrix. Compared with P1, the POSS based polyfluorene P2 exhibited not only a higher thermal stability, but also an improved photophysical property in solution and solid states. The incorporation of diallyl-POSS resulted effectively in inhibiting the strong stacking/dipole-dipole interaction between fluorescent groups in the polyfluorene. The experimental results indicate that the bi-functional POSS based light-emitting polymers with high symmetrical structure can have great potential in optical materials and devices, such as OPV or PLED, etc.
Graphical abstractDownload high-res image (262KB)Download full-size image